GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Bearss, Jeremiah J.  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 3604-3604
    Abstract: BTK inhibitors (e.g. ibrutinib) have significantly impacted the treatment of B-cell malignancies in a positive way. Single agent response rates with ibrutinib are 65% or higher in B-cell lymphomas and chronic lymphocytic leukaemia with the majority of patients enjoying a prolonged duration of response. Continued clinical development is needed, however, as most patients achieve only a partial response from their treatment and ultimately patients become refractory to ibrutinib leading to relapse and disease progression. Targeted combinations with ibrutinib could potentially increase the number of patients undergoing complete remission and combat emergent resistant mechanisms. The PIM family (1, 2, and 3) are serine/threonine kinases that have proven to be oncogenic in-part due to their ability to suppress c-Myc induced apoptosis. The PIM kinases have emerged as important regulators of drug resistance in multiple cancer types. Tolero Pharmaceutical's second generation PIM Kinase inhibitor, TP-3654 has exhibited favorable activity in preclinical models of prostate cancer, AML, and lymphoma. Due to the signaling crosstalk between BTK and PIM through the STAT transcription factors, we hypothesized that synergies may arise through the simultaneous targeting of both kinases. Here, we report a significant increase in drug activity when a BTK inhibitor (ibrutinib) was combined with TP-3654 in various lymphoma cell lines. In Granta-519 cells, the IC50 of ibrutinib decreased 3.5-fold, from 0.7 μM to 0.2 μM, when cultured in combination with a subtoxic concentration of TP-3654 (300 nM). Similarly, the IC50 of TP-3654 decreased 6-fold, from 2.4 μM to 0.4 μM, when cells were cultured in combination with a subtoxic concentration of ibrutinib (100 nM). BTK is known to attenuate the activity of the transcription factor STAT3, a major regulator of PIM kinase levels in cells. Due to this, mechanistic studies focused on analyzing the STAT3 pathway are ongoing to determine the downstream effects of using ibrutinib and TP-3654 in combination. Several lymphoma xenograft studies are also ongoing to further explore this combination in vivo. These results provide a strong rationale that inhibitors of PIM and BTK could be used in combination for the treatment of B-cell malignancies and other B-cell mediated diseases. Citation Format: Jeremiah J. Bearss, Brigham L. Bahr, Katie K. Soh, Peter W. Peterson, Clifford J. Whatcott, Adam Siddiqui-Jain, David J. Bearss, Steven L. Warner. Targeting the PIM kinases in combination with BTK inhibition is synergistic in preclinical models of B-cell malignancies. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3604. doi:10.1158/1538-7445.AM2015-3604
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2698-2698
    Abstract: The super enhancer complex (SEC) is a group of transcription regulatory proteins that coordinate the expression of genetic programs which determine cell identity and drive disease states, such as cancer. In acute myeloid leukemia (AML), SECs have been shown to turn on transcriptional programs that drive tumorigenesis and disease progression. The SEC is replete with potential therapeutic targets that have been the focus of many drug development efforts; including cyclin-dependent kinases (CDK), bromodomain proteins (BRD), histone deacetylases (HDAC), and histone methyltransferases (HMT). SEC-regulated transcription begins as CDK9/cyclin T1 is recruited from an inhibitory complex by BRD4 and brought to the transcriptional start site of genes. CDK9 phosphorylates RNA polymerase II, releasing it from the SEC and leading to transcriptional elongation and gene expression. Considering the close association of CDK9 and BRD4, we hypothesized that the combination of CDK9 and BRD4 inhibitors would have synergistic effects, particularly in AML, a disease largely driven by SEC function. Alvocidib is a potent CDK9 inhibitor with validated clinical activity in AML from multiple Phase II studies in over 400 patients. Additionally, BRD4 inhibitors have demonstrated early promise in clinical studies with a focus on AML. We found that CDK9 inhibitors combined with bromodomain inhibitors produced a synergistic effect by inhibiting the SEC more effectively than either of these compounds alone. For example, cell viability studies with various combinations resulted in an increase in potency. This was observed with alvocidib combined with JQ-1 (BRD4 inhibitor) in MV4-11 AML cells. Furthermore, the combination of alvocidib with JQ-1 completely abrogated SEC function, as measured by c-myc expression through RT-qPCR. Similar results were achieved with other combinations of CDK9 and BRD4 inhibitors. The alvocidib and JQ-1 combination was also evaluated in an MV4-11 mouse xenograft model. As single agents, alvocidib (2.5 mg/kg) exhibited a 44% tumor growth inhibition and JQ-1 (25 mg/kg) a 1% growth inhibition. When these two doses were combined there was 100% tumor growth inhibition. These data, primarily focused on alvocidib and JQ-1, suggest a strong rational for combining CDK9 and BRD4 inhibitors as a treatment strategy for AML. Furthermore, these findings could be more broadly applied to additional therapeutic targets in the SEC, such as DOT1L and HDACs. These strategies yield synergistic effects at inhibiting SEC function and are highly active in tumor growth studies of AML in vivo. Clinical studies utilizing these combination strategies are the next steps to further explore this approach. Citation Format: Brigham L. Bahr, Kyle S. Maughan, Katherine K. Soh, Jeremiah J. Bearss, Wontak Kim, Peter Peterson, Clifford Whatcott, Adam Siddiqui-Jain, Steve L. Warner, David J. Bearss. Combination strategies to target super enhancer transcriptional activity by CDK9 and BRD4 inhibition in acute myeloid leukemia. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2698. doi:10.1158/1538-7445.AM2015-2698
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...