GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-04-01
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-24
    Description: The New Zealand Alpine Fault is a major plate boundary that is expected to be close to rupture, allowing a unique study of fault properties prior to a future earthquake. Here we present 3-D seismic data from the DFDP-2 drill site in Whataroa to constrain valley structures that were obscured in previous 2-D seismic data. The new data consist of a 3-D extended vertical seismic profiling (VSP) survey using three-component and fiber optic receivers in the DFDP-2B borehole and a variety of receivers deployed at the surface. The data set enables us to derive a detailed 3-D P wave velocity model by first-arrival traveltime tomography. We identify a 100–460 m thick sediment layer (mean velocity 2,200 ± 400 m/s) above the basement (mean velocity 4,200 ± 500 m/s). Particularly on the western valley side, a region of high velocities rises steeply to the surface and mimics the topography. We interpret this to be the infilled flank of the glacial valley that has been eroded into the basement. In general, the 3-D structures revealed by the velocity model on the hanging wall of the Alpine Fault correlate well with the surface topography and borehole findings. As a reliable velocity model is not only valuable in itself but also crucial for static corrections and migration algorithms, the Whataroa Valley P wave velocity model we have derived will be of great importance for ongoing seismic imaging. Our results highlight the importance of 3-D seismic data for investigating glacial valley structures in general and the Alpine Fault and adjacent structures in particular.
    Keywords: 622.15 ; vertical seismic profiling ; P wave velocity tomography ; distributed acoustic sensing ; Deep Fault Drilling Project ; subglacial valley
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: These data are supplementary material to “Bedrock Geology of DFDP-2B, Central Alpine Fault, New Zealand” (Toy et al., 2017, http://doi.org/10.1080/00288306.2017.1375533). The data tables SF3 and SF4 are provided as well as Excel as well as CSV and PDF versions (in the zip folder). The table numbers below are referring to Toy et al. (2017): Toy_SF1.pdf (Data Description): Supplementary Data to “Bedrock Geology of DFDP-2B, Central Alpine Fault, New Zealand”, including supplementary methods, Information on reference frames and corrections, and protocols for thin section preparation and scanning electron microscopic analyses. Toy_SF2: Table S1. Time vs. depth during drilling, with lag dip corrections Toy_SF3: Table S2. Energy dispersive spectroscopy (EDS) data acquired using a TESCAN Integrated Mineral Analyzer (TIMA) and phases detected by mineral liberation analysis (MLA) Toy_SF4: Table S3. Electron backscatter diffraction (EBSD) grain sizes
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP). The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. The primary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho. Project HOTSPOT has completed three drill holes. (1) The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2) The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperature rhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3) The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments. We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-22
    Description: The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z 〈 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z 〈 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-14
    Description: The New Zealand Alpine Fault is a major plate boundary that is expected to be close to rupture, allowing a unique study of fault properties prior to a future earthquake. Here we present 3‐D seismic data from the DFDP‐2 drill site in Whataroa to constrain valley structures that were obscured in previous 2‐D seismic data. The new data consist of a 3‐D extended vertical seismic profiling (VSP) survey using three‐component and fiber optic receivers in the DFDP‐2B borehole and a variety of receivers deployed at the surface. The data set enables us to derive a detailed 3‐D P wave velocity model by first‐arrival traveltime tomography. We identify a 100–460 m thick sediment layer (mean velocity 2,200 ± 400 m/s) above the basement (mean velocity 4,200 ± 500 m/s). Particularly on the western valley side, a region of high velocities rises steeply to the surface and mimics the topography. We interpret this to be the infilled flank of the glacial valley that has been eroded into the basement. In general, the 3‐D structures revealed by the velocity model on the hanging wall of the Alpine Fault correlate well with the surface topography and borehole findings. As a reliable velocity model is not only valuable in itself but also crucial for static corrections and migration algorithms, the Whataroa Valley P wave velocity model we have derived will be of great importance for ongoing seismic imaging. Our results highlight the importance of 3‐D seismic data for investigating glacial valley structures in general and the Alpine Fault and adjacent structures in particular.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-11-24
    Description: The plate‐bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. We have acquired and processed reflection seismic data to image the subsurface around the main drill site of the Deep Fault Drilling Project (DFDP‐2). The resulting velocity models and seismic images of the upper 5 km show complex subsurface structures around the Alpine Fault zone. The most prominent feature is a strong reflector at depths of 1.5–2.2 km with an apparent dip of 48° to the southeast below the DFDP‐2 borehole, which we assume to be the main trace of the Alpine Fault. Above the main reflector, parallel reflectors suggest the presence of a ∼600 m wide damage zone. Additionally, subparallel reflectors are imaged that we interpret as secondary branches of the main fault zone. Conjugate faults imaged by the data show the complexity of the subsurface. The derived P wave velocity model reveals a 300–600 m thick sedimentary layer with velocities of ∼2.3 km/s above a schist basement with velocities of 4.5–5.5 km/s. A low‐velocity layer can be observed within the basement at 0.8–2 km depth. A small‐scale low‐velocity anomaly appears at the top of the basement that can be correlated to the fault zone. The results provide a reliable basis for a seismic characterization of the DFDP‐2 drill site that can be used for further structural and geological investigations of the architecture of the Alpine Fault in this area.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...