GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Savanna plants. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (781 pages)
    Edition: 1st ed.
    ISBN: 9781119081128
    DDC: 581.748
    Language: English
    Note: Intro -- Title Page -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 Distribution and Determinants of Savannas -- 1.1 Introduction -- 1.2 Evolutionary History of Savanna Vegetation and Fauna -- 1.3 Defining Savannas -- 1.3.1 Are Savannas Tropical Systems? -- 1.3.2 Distinguishing Savannas from Grasslands -- 1.3.3 Distinguishing Savannas from Forests -- 1.4 Global Determinants of Savannas -- 1.4.1 Mesic Transition: Points of Contention -- 1.4.1.1 The Role of Nutrients -- 1.4.1.2 Rainfall Seasonality -- 1.4.2 Mesic Transition: Toward Resolution -- 1.4.3 Mesic Transition: Unresolved Ideas -- 1.4.4 Arid Transition -- 1.4.5 Arid Transition: Toward Resolution -- 1.4.6 Determinants of Temperate Savannas -- 1.5 Functional Differences Between Savannas -- 1.5.1 Temperate vs Tropical Savannas -- 1.5.2 Functional Differences Within Tropical Savannas -- 1.6 Conclusions and the Future of Savanna Ecosystems -- References -- Chapter 2 African and Asian Savannas: Comparisons of Vegetation Composition and Drivers of Vegetation Structure and Function -- 2.1 Introduction -- 2.2 Climate and Vegetation Formations -- 2.3 Fine-Leaved and Broad-Leaved Savannas: Vegetation Structure, Composition, and Geographic Distribution -- 2.4 Role of Bottom‐Up Drivers in Regulating Vegetation Structure: Climate and Soil Nutrients -- 2.5 Role of Top‐Down Forces: Fire and Herbivory -- 2.6 African and Asian Savannas in the Anthropocene -- References -- Chapter 3 Savannas of Australia and New Guinea: Vegetation and the Functional Role of Extant and Extinct Fauna -- 3.1 Introduction -- 3.2 The Biota of Australia's and New Guinea's Savannas -- 3.3 Climate, Landforms, and Fire -- 3.4 Human History and Impacts -- 3.5 Are Native Mammals Irrelevant? -- 3.6 Was Ecosystem Functioning Different Prior to Human Dispersal to Australia?. , 3.7 Critique of the "Nutrient Poverty/Intense Fire" Theory -- 3.8 Australia's Lost Megafauna -- 3.9 Habitat Variation and the Pleistocene Megafauna -- 3.10 Impacts of Herbivores in Australian Savannas -- 3.11 Toward a New Hypothesis of Plant-Animal Interactions in Australian Savannas -- References -- Chapter 4 South American Savannas -- 4.1 Introduction -- 4.2 Origin of South American Savannas -- 4.3 Distribution and Diversity of South American Savannas -- 4.4 Northern Savannas -- 4.4.1 Colombo-Venezuelan Llanos -- 4.4.1.1 Orinoco Llanos -- 4.4.1.2 Llanos Orientales -- 4.4.2 Gran Sabana -- 4.4.3 Rio Branco-Rupununi Savannas -- 4.4.3.1 Rio Branco Savannas -- 4.4.3.2 Rupununi Savannas -- 4.4.4 Savannas of Amapá -- 4.5 Southern Savannas -- 4.5.1 Savannas of Humaitá -- 4.5.2 Savannas of Pará -- 4.5.3 Beni Savannas -- 4.5.4 Cerrado -- 4.5.4.1 Cerrado (Sensu Stricto) -- 4.5.4.2 Cerrado Park -- 4.5.4.3 Palm Groves -- 4.5.4.4 Vereda -- 4.5.4.5 Campo Limpo ("Open Grassland") -- 4.5.4.6 Campo Sujo ("Dense Grassland") -- 4.5.4.7 Campo Rupestre ("Rocky Field") -- 4.5.5 Pantanal -- 4.5.6 Chaco -- 4.6 Effects of Water Deficit, Herbivory, and Fire on Vegetation Dynamics -- 4.6.1 Water Deficit -- 4.6.2 Herbivory -- 4.6.3 Fire -- 4.7 Climate Change, Anthropogenic Pressure, and the Future -- 4.8 Concluding Remarks -- 4.9 Acknowledgments -- References -- Chapter 5 Savannas of North America -- 5.1 Introduction -- 5.1.1 Definitions -- 5.1.2 Climatic Patterns -- 5.2 Fire -- 5.3 Grazing -- 5.4 Biodiversity -- 5.5 Conservation -- 5.6 Oak Savannas -- 5.6.1 Central US, South-Central Canada, Northern Sierra Madre (Mexico) Oak Savannas -- 5.6.2 California Oak Savannas -- 5.6.3 South-West (Arizona, New Mexico, Northern Mexico) Oak Savannas -- 5.6.4 Pacific Northwest Oak Savannas -- 5.6.5 East-Central US: Glades, Barrens, and Other Forest Openings. , 5.6.6 Oak-Dominated Shrub Savannas -- 5.7 Pine Savannas -- 5.7.1 South-Eastern US Pine Savannas -- 5.7.2 Rocky Mountains Pine Savannas -- 5.8 Juniper Savannas -- 5.8.1 Juniper Savannas in the Western Mountains -- 5.8.2 Eastern Red Cedar Savannas -- 5.8.3 South-Central US and Northern Sierra Madre Oriental Juniper Savannas -- 5.9 Mesquite Savannas -- 5.10 Northern and High‐Elevation Savannas -- 5.11 Shrub Savannas -- 5.12 Conclusions -- 5.13 Acknowledgments -- References -- Chapter 6 Socioeconomic Value of Savannas -- 6.1 Introduction -- 6.2 Land Tenure and Land Use -- 6.3 Livestock Farming -- 6.3.1 Overview -- 6.3.2 Commercial Livestock Farming -- 6.3.3 Subsistence Livestock Farming -- 6.4 Wildlife Industry -- 6.4.1 Overview -- 6.4.2 Ecotourism -- 6.4.3 Hunting -- 6.4.4 Animal Products -- 6.4.5 Game Breeding and Live Sales -- 6.5 Commercial Timber -- 6.6 Non-timber Products -- 6.6.1 Uses -- 6.6.2 Economic Value -- 6.6.2.1 Non-monetary Income -- 6.6.2.2 Cash Income -- 6.6.2.3 Environmental Income -- 6.7 Conclusion -- References -- Part II Herbivores -- Chapter 7 Ecology of Smaller Animals Associated with Savanna Woody Plants: The Value of the Finer Details -- 7.1 Introduction -- 7.2 Woody Plant Seed Herbivory -- 7.2.1 Seed Herbivores -- 7.3 Woody Plant Seed and Fruit Dispersal -- 7.3.1 Diplochory -- 7.3.1.1 Seed Dispersal by Birds -- 7.3.1.2 Invertebrate Seed Dispersal -- 7.3.2 Fruit Dispersal -- 7.4 Woody Plant Seedling Establishment -- 7.5 Leaves and Herbivory -- 7.6 Pollination and Nectarivory -- 7.7 Nutrient Cycling -- 7.8 Conclusions -- References -- Chapter 8 Evolution of Large Mammal Herbivores in Savannas -- 8.1 Introduction -- 8.2 Herbivore Dietary Niches -- 8.3 Diversification of Browsers and Grazers -- 8.4 Effects of Vegetation Change -- 8.5 Herbivore Body Size -- 8.6 Pleistocene Extinctions and Contemporary Herbivore Diversity. , 8.7 Summary -- References -- Chapter 9 Browser Population-Woody Vegetation Relationships in Savannas: From Bites to Landscapes -- 9.1 Introduction -- 9.2 Factors Influencing Diet Selection -- 9.2.1 Browser Traits that Influence Foraging -- 9.2.1.1 Body Size -- 9.2.1.2 Gut Morphology -- 9.2.2 Woody Plant Traits that Influence Browsers -- 9.2.2.1 Seasonality -- 9.2.2.2 High Nutrient Levels (Positive) -- 9.2.2.3 Chemical Defenses (Negative) -- 9.2.2.4 Physical Defenses -- 9.2.2.5 Mutualisms -- 9.2.3 Herbivore Coping Mechanisms -- 9.3 Browser Impacts on Vegetation -- 9.3.1 Biomass Removal (Small and Large) -- 9.3.2 Impacts on Seeds -- 9.4 Feedback from Browsed Plants to Browsers -- 9.4.1 Lowered Food Availability -- 9.4.2 Habitat Changes -- 9.4.3 Change in Landscapes of Fear -- 9.4.4 New Growth -- 9.4.5 Nutrient Hot Spots -- 9.4.6 Browsing Lawns -- 9.5 Scaling from Bites to Browser Population Dynamics -- 9.5.1 Population Dynamics -- 9.5.2 Intake and Population Size -- 9.5.3 Food Availability, Food Quality, and Population Dynamics -- 9.5.4 Future Research -- 9.6 Conclusions -- References -- Chapter 10 Predator Effects on Herbivore Dynamics and Behavior: What Mechanisms Lead to Trophic Cascades in Savannas? -- 10.1 Introduction -- 10.2 Consumptive Effects of Predation -- 10.2.1 Concepts, Theory, and Evidence from Biomes Other than Savanna -- 10.2.1.1 Additive Versus Compensatory Mortality -- 10.2.1.2 Predator Functional Response -- 10.2.1.3 Ecosystem Characteristics -- 10.2.2 Evidence from Savannas -- 10.3 Non-consumptive Effects of Predation -- 10.3.1 Concepts, Theory, and Evidence from Biomes Other than Savanna -- 10.3.1.1 Landscape Use -- 10.3.1.2 Vigilance and Grouping Strategies -- 10.3.1.3 The Importance of Food-Safety Trade-Offs -- 10.3.1.4 Demographic Costs of Behavioral Adjustments -- 10.3.2 Evidence from Savannas -- 10.3.2.1 Landscape Use. , 10.3.2.2 Vigilance and Grouping Strategies -- 10.4 Cascading Effects of Consumptive and Non‐consumptive Effects of Predation on Lower Trophic Levels -- 10.5 The Times they Are A-changin': Changes in Megaherbivory, Migration Patterns, and Climate -- References -- Part III Woody Plants -- Chapter 11 Physiological Traits of Savanna Woody Species: Adaptations to Resource Availability -- 11.1 Introduction -- 11.2 Soil Nutrients and Root Responses -- 11.3 Leaf Phenology and Available Water -- 11.4 Competition for Resources -- References -- Chapter 12 Patterns and Determinants of Woody Plant Growth in Savannas -- 12.1 Introduction: The Relevance of Growth Rates -- 12.2 Determinants of Growth Rates -- 12.2.1 Seedlings -- 12.2.2 Saplings -- 12.2.3 Adults -- 12.2.4 Demographic Significance -- 12.2.4.1 Growth Trajectory -- 12.2.4.2 Size or Age of Individuals -- 12.2.4.3 Above vs Below Ground -- 12.2.4.4 Plant Part -- 12.2.4.5 Interacting Factors -- 12.2.4.6 Experimental Conditions -- 12.2.4.7 Individual vs Population Growth -- 12.2.4.8 Time and Size -- 12.2.4.9 Species -- 12.2.5 The Value of Long-Term Research -- 12.3 Modeling Growth -- 12.3.1 Insights from Published Data -- 12.3.2 Predicting Rates from Environment or Phylogeny -- 12.3.3 Deficiencies in Growth Rate Data -- 12.4 Conclusions -- 12.A Appendix: Growth Rate Data -- References -- Chapter 13 Fire and Browsers in Savannas: Traits, Interactions, and Continent-Level Patterns -- 13.1 Introduction -- 13.2 Browser and Fire Attributes -- 13.2.1 How do Fire and Browsers Compare as Consumers of Woody Plants? -- 13.2.1.1 Frequency and Seasonality -- 13.2.1.2 Selectivity, Intensity, and Scale -- 13.2.1.3 Elimination Thresholds -- 13.2.2 Plant Responses to Fire and Browsing -- 13.2.2.1 Defense Traits -- 13.2.2.2 Architecture -- 13.2.2.3 Resprouting and Bud Protection -- 13.2.2.4 Fire- and Browser-Traps. , 13.2.2.5 Reproduction and Seedling Recruitment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions. A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels? In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...