GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • English  (2)
Document type
Source
Language
  • English  (2)
Years
  • 1
    Publication Date: 2021-10-22
    Description: Geobiology explores how Earth's system has changed over the course of geologic history and how living organisms on this planet are impacted by or are indeed causing these changes. For decades, geologists, paleontologists, and geochemists have generated data to investigate these topics. Foundational efforts in sedimentary geochemistry utilized spreadsheets for data storage and analysis, suitable for several thousand samples, but not practical or scalable for larger, more complex datasets. As results have accumulated, researchers have increasingly gravitated toward larger compilations and statistical tools. New data frameworks have become necessary to handle larger sample sets and encourage more sophisticated or even standardized statistical analyses. In this paper, we describe the Sedimentary Geochemistry and Paleoenvironments Project (SGP; Figure 1), which is an open, community-oriented, database-driven research consortium. The goals of SGP are to (1) create a relational database tailored to the needs of the deep-time (millions to billions of years) sedimentary geochemical research community, including assembling and curating published and associated unpublished data; (2) create a website where data can be retrieved in a flexible way; and (3) build a collaborative consortium where researchers are incentivized to contribute data by giving them priority access and the opportunity to work on exciting questions in group papers. Finally, and more idealistically, the goal was to establish a culture of modern data management and data analysis in sedimentary geochemistry. Relative to many other fields, the main emphasis in our field has been on instrument measurement of sedimentary geochemical data rather than data analysis (compared with fields like ecology, for instance, where the post-experiment ANOVA (analysis of variance) is customary). Thus, the longer-term goal was to build a collaborative environment where geobiologists and geologists can work and learn together to assess changes in geochemical signatures through Earth history. With respect to the data product, SGP is focused on assembling a well-vetted and comprehensive dataset that is tractable to multivariate statistical analyses accounting for multiple geological and methodological biases. Phase 1 of the project, which focused on the Neoproterozoic and Paleozoic, has been completed. Future phases will capture a broader range of geologic time, data types, and geography. The database contains tens of thousands of unpublished data points provided by consortium members, as well as detailed metadata that go beyond what is contained in papers. In many cases, these represent measurements that are tangential to a given published study but still of high utility to database studies; these allow the community to address questions that would be impossible to answer solely with the published data. For instance, in order to use a proxy such as Mo/TOC (total organic carbon) ratios in mudrocks deposited under a euxinic water column, the full suite of trace metal, iron speciation, and total organic carbon data is needed. Likewise, geospatial information is required to account for sampling biases, and many statistical learning approaches cannot accept, or have difficulty with, incomplete geological predictor variables. Ultimately, it is this complete data matrix that will allow for SGP’s most insightful analyses.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-25
    Description: Progressive hydrothermal alteration and mineral precipitation can modify the physical properties and mechanical behavior of the affected rocks, increasing the probabilities of phreatic or hydrothermal explosive eruptions. In this work we focus on the study of rock alteration and hydrothermal system of Deception Island, which is one of the most active volcanoes in Antarctica. A characterization of the pre-caldera and syn-caldera rock alterations has been done as a starting point for the understanding of the past and present hydrothermal system in the island. The alteration processes that have affected pre-caldera deposits are related to low temperature (〈200 oC) fluids, with pervasive palagonitisation and precipitation of smectite and zeolite. In some samples carbonate has also been detected. This alteration is consistent with rocks located at the first 500-600 meters depth of the pre-caldera shield volcano, in which the upper part of the sequence was affected by low-temperature acidic hydrothermal fluids that would have caused the dissolution of some phenocrysts and the consequent precipitation of magnesite. An extended palagonitisation characterize the syn-caldera deposits, but smectite and zeolite have also been identified. This is consistent with syn-depositional and meteoric alteration. Therefore, in the studied samples there is no evidence of persistent hydrothermal alteration that could be related to the current hydrothermal system. This work is part of the CSIC Interdisciplinary Thematic Platform (PTI) Polar zone Observatory (PTI-POLARCSIC) activities. This research was partially funded by the MINECO VOLCLIMA (CGL2015-72629-EXP) and HYDROCAL (PID2020-114876GB-I00) MCIN/AEI/10.13039/501100011033 research projects. This research is also supported by the PREDOCS-UB grant.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...