GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientia Marina, Editorial CSIC, Vol. 87, No. 3 ( 2023-10-03), p. e070-
    Abstract: Large anticyclonic eddies can detach from the Algerian Current, forming open-sea Algerian Eddies. These mesoscale structures have been intensively studied by means of sea surface temperature and altimetry data, and using numerical models. However, few studies describe an in situ sampling of their whole vertical structure. Furthermore, the area extending from Cape La Nao (western edge of the Balearic Channels) to the Almería-Orán Front has received very little attention, and it could be considered that there is a gap in our present oceanographic knowledge of this part of the western Mediterranean. An Algerian Eddy lasting for several months was detected in December 2021 to the south of Cape Palos. In order to analyse this eddy, an opportunity sampling was designed taking advantage of the periodic monitoring campaign RADMED 0222. This sampling revealed that the eddy had a baroclinic character, affecting the whole water column. These results suggest that this eddy was generated at the Algerian Current, finally affecting an area close to the eastern Spanish coast. The presence of these structures in this region of the western Mediterranean could alter the southward progression of the Northern Current and even the presence and structure of the Almería-Orán Front.
    Type of Medium: Online Resource
    ISSN: 1886-8134 , 0214-8358
    URL: Issue
    Language: Unknown
    Publisher: Editorial CSIC
    Publication Date: 2023
    detail.hit.zdb_id: 2173503-7
    detail.hit.zdb_id: 1030881-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-6-10)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-6-10)
    Abstract: The warming of the surface ocean is expected to increase the stratification of the upper water column. This would decrease the efficiency of the wind-induced mixing, reducing the nutrient supply to the euphotic layer and the productivity of the oceans. Climatic projections show that the Mediterranean Sea will experience a strong warming and salting along the twenty first century. Nevertheless, very few works have found and quantified changes in the water column stratification of the Western Mediterranean. In this work, we obtain time series of Mixed Layer Depth (MLD) along the Spanish Mediterranean waters and the Gulf of Cádiz, using periodic CTD profiles collected under the umbrella of the Ocean Observing system of the Instituto Español de Oceanografía (IEO-CSIC). The length of the time series analyzed is variable, depending on the geographical area, but in some cases these time series extend from the beginning of the 1990s decade. Our results show that at present, no statistically significant changes can be detected. These results are confirmed by the analysis of MLD time series obtained from Argo profilers. Some of the meteorological factors that could affect the water column stratification (wind intensity and precipitation rates) did not experience significant changes for the 1990-2021 period, neither were observed long-term changes in the chlorophyll concentration. The hypothesis proposed to explain this lack of trends, is that the salinity increase of the surface waters has compensated for the warming, and consequently, the density of the upper layer of the Western Mediterranean (WMED) has remained constant. As the wind intensity has not experienced significant trends, the stratification of the Spanish Mediterranean waters and those of the Gulf of Cádiz would have not been affected. Nevertheless, we do not discard that our results are a consequence of the short length of the available time series and the large variance of the variables analyzed, evidencing the importance of the maintenance of the ocean monitoring programs.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-3-8)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-3-8)
    Abstract: Time series collected from 2004 to 2020 at an oceanographic station located at the westernmost sill of the Strait of Gibraltar to monitor the Mediterranean outflow into the North Atlantic have been used to give some insights on changes that have been taking place in the Mediterranean basin. Velocity data indicate that the exchange through the Strait is submaximal (that is, greater values of the exchanged flows are possible) with a mean value of −0.847 ± 0.129 Sv and a slight trend to decrease in magnitude (+0.017 ± 0.003 Sv decade −1 ). Submaximal exchange promotes footprints in the Mediterranean outflow with little or no-time delay with regards to changes occurring in the basin. An astonishing warming trend of 0.339 ± 0.008°C decade −1 in the deepest layer of the outflow from 2013 onwards stands out among these changes, a trend that is an order of magnitude greater than any other reported so far in the water masses of the Mediterranean Sea. Biogeochemical ( pH ) data display a negative trend indicating a gradual acidification of the outflow in the monitoring station. Data analysis suggests that these trends are compatible with a progressively larger participation of Levantine Intermediate Water (slightly warmer and characterized by a pH lower than that of Western Mediterranean Deep Water) in the outflow. Such interpretation is supported by climatic data analysis that indicate diminished buoyancy fluxes to the atmosphere during the seven last years of the analyzed series, which in turn would have reduced the rate of formation of Western Mediterranean Deep Water. The flow through the Strait has echoed this fact in a situation of submaximal exchange and, ultimately, reflects it in the shocking temperature trend recorded at the monitoring station.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 12 ( 2021-9-22)
    Abstract: In adulthood, the ability to digest lactose, the main sugar present in milk of mammals, is a phenotype (lactase persistence) observed in historically herder populations, mainly Northern Europeans, Eastern Africans, and Middle Eastern nomads. As the –13910 ∗ T allele in the MCM6 gene is the most well-characterized allele responsible for the lactase persistence phenotype, the –13910C & gt; T (rs4988235) polymorphism is commonly evaluated in lactase persistence studies. Lactase non-persistent adults may develop symptoms of lactose intolerance when consuming dairy products. In the Americas, there is no evidence of the consumption of these products until the arrival of Europeans. However, several American countries’ dietary guidelines recommend consuming dairy for adequate human nutrition and health promotion. Considering the extensive use of dairy and the complex ancestry of Pan-American admixed populations, we studied the distribution of –13910C & gt; T lactase persistence genotypes and its flanking haplotypes of European origin in 7,428 individuals from several Pan-American admixed populations. We found that the –13910 ∗ T allele frequency in Pan-American admixed populations is directly correlated with allele frequency of the European sources. Moreover, we did not observe any overrepresentation of European haplotypes in the –13910C & gt; T flanking region, suggesting no selective pressure after admixture in the Americas. Finally, considering the dominant effect of the –13910 ∗ T allele, our results indicate that Pan-American admixed populations are likely to have higher frequency of lactose intolerance, suggesting that general dietary guidelines deserve further evaluation across the continent.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...