GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 6 ( 2019-2-26)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Physical Oceanography Vol. 47, No. 6 ( 2017-06), p. 1389-1401
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 47, No. 6 ( 2017-06), p. 1389-1401
    Abstract: When internal (inertia-)gravity waves propagate in a vertically sheared geostrophic (eddying or mean) flow, they exchange energy with the flow. A novel concept parameterizing internal wave–mean flow interaction in ocean circulation models is demonstrated, based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation. The concept enables a simplification of the radiative transfer equation with a small number of reasonable assumptions and a derivation of simple but consistent parameterizations in terms of spectrally integrated energy compartments that are used as prognostic model variables. The effect of the waves on the mean flow in this paradigm is in accordance with the nonacceleration theorem: only in the presence of dissipation do waves globally exchange energy with the mean flow in the time mean. The exchange can have either direction. These basic features of wave–mean flow interaction are theoretically derived in a Wentzel–Kramers–Brillouin (WKB) approximation of the wave dynamics and confirmed in a suite of numerical experiments with unidirectional shear flow.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Physical Oceanography Vol. 52, No. 9 ( 2022-09), p. 2219-2235
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 52, No. 9 ( 2022-09), p. 2219-2235
    Abstract: We investigate changes in the ocean circulation due to the variation of isopycnal diffusivity ( κ iso ) in a global non-eddy-resolving model. Although isopycnal diffusion is thought to have minor effects on interior density gradients, the model circulation shows a surprisingly large sensitivity to the changes: with increasing κ iso , the strength of the Atlantic residual overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) transport weaken. At high latitudes, the isopycnal diffusion diffuses temperature and salinity upward and poleward, and at low latitudes downward close to the surface. Increasing isopycnal diffusivity increases the meridional isopycnal fluxes whose meridional gradient is equatorward, hence leading to a negative contribution to the flux divergence in the tracer equations and predominant cooling and freshening equatorward of 40°. The effect on temperature overcompensates the countering effect of salinity diffusion, such that the meridional density differences decrease, along with which ACC and AMOC decrease. We diagnose the adjustment process to the new equilibrium with increased isopycnal diffusion to assess how the other terms in the tracer equations react to the increased κ iso . It reveals that around ±40° latitude, the cooling induced by the increased isopycnal flux is only partly compensated by warming by advection, explaining the net cooling. Overall, the results emphasize the importance of isopycnal diffusion on ocean circulation and dynamics, and hence the necessity of its careful representation in models. Significance Statement The effect of mixing by mesoscale eddies, represented as diffusion along surfaces of constant density in models, on the ocean circulation is not well understood. Here, we show that an increase in the eddy diffusivity in different setups of a global ocean model leads to a surprisingly large change of the ocean circulation. The strength of the Atlantic overturning circulation and the Antarctic Circumpolar Current decrease. We find that the interior ocean becomes cooler and fresher and that the temperature effect on density dominates over salinity, resulting in a decrease in the density gradients. Our results point out the importance of eddy diffusion on ocean circulation, and hence the necessity of its correct representation in ocean and climate models.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 8 ( 2016-08), p. 2335-2350
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 8 ( 2016-08), p. 2335-2350
    Abstract: Two surface waves can interact to produce an internal gravity wave by nonlinear resonant coupling. The process has been called spontaneous creation (SC) because it operates without internal waves being initially present. Previous studies have shown that the generated internal waves have high frequency close to the local Brunt–Väisälä frequency and wavelengths that are much larger than those of the participating surface waves, and that the spectral transfer rate of energy to the internal wave field is small compared to other generation processes. The aim of the present analysis is to provide a global map of the energy transfer into the internal wave field by surface–internal wave interaction, which is found to be about 10 −3 TW in total, based on a realistic wind-sea spectrum (depending on wind speed), mixed layer depths, and stratification below the mixed layer taken from a state-of-the-art numerical ocean model. Unlike previous calculations of the spectral transfer rate based on a vertical mode decomposition, the authors use an analytical framework that directly derives the energy flux of generated internal waves radiating downward from the mixed layer base. Since the radiated waves are of high frequency, they are trapped and dissipated in the upper ocean. The radiative flux thus feeds only a small portion of the water column, unlike in cases of wind-driven near-inertial waves that spread over the entire ocean depth before dissipating. The authors also give an estimate of the interior dissipation and implied vertical diffusivities due to this process. In an extended appendix, they review the modal description of the SC interaction process, completed by the corresponding counterpart, the modulation interaction process (MI), where a preexisting internal wave is modulated by a surface wave and interacts with another one. MI establishes a damping of the internal wave field, thus acting against SC. The authors show that SC overcomes MI for wind speeds exceeding about 10 m s −1 .
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Physical Oceanography Vol. 47, No. 6 ( 2017-06), p. 1403-1412
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 47, No. 6 ( 2017-06), p. 1403-1412
    Abstract: A novel concept for parameterizing internal wave–mean flow interaction in ocean circulation models is extended to an arbitrary two-dimensional flow with vertical shear. The concept is based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation integrated in wavenumber space. Energy compartments result for the horizontal direction of wave propagation as additional prognostic model variables, of which only four are taken here for simplicity. The mean flow is interpreted as residual velocities with respect to the wave activity. The effect of wave drag and energy exchange due to the vertical shear of the residual mean flow is then given simply by a vertical flux of momentum. This flux is related to the asymmetries in upward, downward, alongflow, and counterflow wave propagation described by the energy compartments. A numerical implementation in a realistic eddying ocean model shows that the wave drag effect is a significant sink of kinetic energy in the interior ocean.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 9 ( 2014-09), p. 2524-2546
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 9 ( 2014-09), p. 2524-2546
    Abstract: In this study, the authors discuss two different parameterizations for the effect of mixed layer eddies, one based on ageostrophic linear stability analysis (ALS) and the other one based on a scaling of the potential energy release by eddies (PER). Both parameterizations contradict each other in two aspects. First, they predict different functional relationships between the magnitude of the eddy fluxes and the Richardson number (Ri) related to the background state. Second, they also predict different vertical structure functions for the horizontal eddy fluxes. Numerical simulations for two different configurations and for a large range of different background conditions are used to evaluate the parameterizations. It turns out that PER is better suited to capture the Ri dependency of the magnitude of the eddy fluxes. On the other hand, the vertical structure of the meridional eddy fluxes predicted by ALS is more accurate than that of PER, while the vertical structure of the vertical eddy fluxes is well predicted by both parameterizations. Therefore, this study suggests the use of the magnitude of PER and the vertical structure functions of ALS for an improved parameterization of mixed layer eddy fluxes.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Physical Oceanography Vol. 52, No. 7 ( 2022-07), p. 1351-1362
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 52, No. 7 ( 2022-07), p. 1351-1362
    Abstract: The generation of internal gravity waves from an initially geostrophically balanced flow is diagnosed in nonhydrostatic numerical simulations of shear instabilities for varied dynamical regimes. A nonlinear decomposition method up to third order in the Rossby number (Ro) is used as the diagnostic tool for a consistent separation of the balanced and unbalanced motions in the presence of their nonlinear coupling. Wave emission is investigated in an Eady-like and a jet-like flow. For the jet-like case, geostrophic and ageostrophic unstable modes are used to initialize the flow in different simulations. Gravity wave emission is in general very weak over a range of values for Ro. At sufficiently high Ro, however, when the condition for symmetric instability is satisfied with negative values of local potential vorticity, significant wave emission is detected even at the lowest order. This is related to the occurrence of fast ageostrophic instability modes, generating a wide spectrum of waves. Thus, gravity waves are excited from the instability of the balanced mode to lowest order only if the condition of symmetric instability is satisfied and ageostrophic unstable modes obtain finite growth rates. Significance Statement We aim to understand the generation of internal gravity waves in the atmosphere and ocean from a flow field that is initially balanced, i.e., free from any internal gravity waves. To examine this process, we use simulations from idealized numerical models and nonlinear flow decomposition method to identify waves. Our results show that a prominent mechanism by which waves can be generated is related to symmetric or ageostrophic instabilities of the balanced flow possibly occurring during frontogenesis. This process can be a significant mechanism to dissipate the energy of the geostrophic flow in the ocean.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Physical Oceanography Vol. 53, No. 5 ( 2023-05), p. 1337-1354
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 53, No. 5 ( 2023-05), p. 1337-1354
    Abstract: The spectral description of the energy of oceanic internal gravity waves is generally represented by the Garrett–Munk (GM) model, a function with a power-law decrease of spectral energy in wavenumber–frequency space. Besides the slopes of these power laws, the spectrum is expressed as a function of energy and a bandwidth parameter that fixes the range of vertical modes excited in the respective state. Whereas concepts have been developed and agreed upon of what processes feed the wave spectrum and what dissipates energy, there is no explanation of what shapes the spectral distribution, i.e., how the power laws come about and what sets the bandwidth. The present study develops a parametric spectral model of energy and bandwidth from the basic underlying energy balance in terms of forcing, propagation, refraction, spectral transfer, and dissipation. The model is an extension of the IDEMIX (Internal Wave Dissipation, Energy and Mixing) models where bandwidth was taken as a constant parameter. The current version of the model is restricted to single-column mode and the slopes of the spectral power laws are fixed. A coupled system of predictive equations for energy and bandwidth (for up- and downward propagating waves) results. The equations imply that bandwidth relates to energy by a power law with an exponent given by the dynamical parameters. It agrees favorably with energy, bandwidth, and slope data from previously published fits of the GM model to Argo float observations. Numerical solutions of the coupled energy–bandwidth model in stand-alone modus are presented.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Physical Oceanography Vol. 48, No. 8 ( 2018-08), p. 1709-1730
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 48, No. 8 ( 2018-08), p. 1709-1730
    Abstract: We aim to diagnose internal gravity waves emitted from balanced flow and investigate their role in the downscale transfer of energy. We use an idealized numerical model to simulate a range of baroclinically unstable flows to mimic dynamical regimes ranging from ageostrophic to quasigeostrophic flows. Wavelike signals present in the simulated flows, seen for instance in the vertical velocity, can be related to gravity wave activity identified by frequency and frequency–wavenumber spectra. To explicitly assign the energy contributions to the balanced and unbalanced (gravity) modes, we perform linear and nonlinear modal decomposition to decompose the full state variable into its balanced and unbalanced counterparts. The linear decomposition shows a reasonable separation of the slow and fast modes but is no longer valid when applied to a nonlinear system. To account for the nonlinearity in our system, we apply the normal mode initialization technique proposed by Machenhauer in 1977. Further, we assess the strength of the gravity wave activity and dissipation related to the decomposed modes for different dynamical regimes. We find that gravity wave emission becomes increasingly stronger going from quasigeostrophic to ageostrophic regime. The kinetic energy tied to the unbalanced mode scales close to Ro 2 (or Ri −1 ), with Ro and Ri being the Rossby and Richardson numbers, respectively. Furthermore, internal gravity waves dissipate predominantly through small-scale dissipation, which emphasizes their role in the downscale energy transfer.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Physical Oceanography Vol. 49, No. 9 ( 2019-09), p. 2393-2406
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 49, No. 9 ( 2019-09), p. 2393-2406
    Abstract: Gravity wave emission by geostrophically balanced flow is diagnosed in numerical simulations of lateral and vertical shear instabilities. The diagnostic method in use allows for a separation of balanced flow and residual wave signal up to fourth order in the Rossby number (Ro). While evidence is found for a small but finite gravity wave emission from balanced flow in a single-layer model with large lateral shear and large Ro, a vertically resolved model with moderate velocity amplitudes appropriate to the interior ocean hardly shows any wave emission. Only when static instabilities generated by the shear instability of the balanced flow are allowed can a gravity wave signal similar to the ones reported in earlier studies be detected in the vertically resolved case. This result suggests a relatively small role of spontaneous wave emission in the classical sense of Lighthill radiation, and emphasizes the role of convective or symmetric instabilities during frontogenesis for the generation of internal gravity waves in the ocean and atmosphere.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...