GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 1 ( 2021-01), p. E20-E37
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 1 ( 2021-01), p. E20-E37
    Abstract: The World Meteorological Organization has developed a set of headline indicators for global climate monitoring. These seven indicators are a subset of the existing set of essential climate variables (ECVs) established by the Global Climate Observing System and are intended to provide the most essential parameters representing the state of the climate system. These indicators include global mean surface temperature, global ocean heat content, state of ocean acidification, glacier mass balance, Arctic and Antarctic sea ice extent, global CO 2 mole fraction, and global mean sea level. This paper describes how well each of these indicators are currently monitored, including the number and quality of the underlying datasets; the health of those datasets; observation systems used to estimate each indicator; the timeliness of information; and how well recent values can be linked to preindustrial conditions. These aspects vary widely between indicators. While global mean surface temperature is available in close to real time and changes from preindustrial levels can be determined with relatively low uncertainty, this is not the case for many other indicators. Some indicators (e.g., sea ice extent) are largely dependent on satellite data only available in the last 40 years, while some (e.g., ocean acidification) have limited underlying observational bases, and others (e.g., glacial mass balance) with data only available a year or more in arrears.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 8 ( 2021-08), p. 749-755
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 8 ( 2021-08), p. 749-755
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-11-3)
    Abstract: Faced with sea level rise and the intensification of extreme events, human populations living on the coasts are developing responses to address local situations. A synthesis of the literature on responses to coastal adaptation allows us to highlight different adaptation strategies. Here, we analyze these strategies according to the complexity of their implementation, both institutionally and technically. First, we distinguish two opposing paradigms – fighting against rising sea levels or adapting to new climatic conditions; and second, we observe the level of integrated management of the strategies. This typology allows a distinction between four archetypes with the most commonly associated governance modalities for each. We then underline the need for hybrid approaches and adaptation trajectories over time to take into account local socio-cultural, geographical, and climatic conditions as well as to integrate stakeholders in the design and implementation of responses. We show that dynamic and participatory policies can foster collective learning processes and enable the evolution of social values and behaviors. Finally, adaptation policies rely on knowledge and participatory engagement, multi-scalar governance, policy monitoring, and territorial solidarity. These conditions are especially relevant for densely populated areas that will be confronted with sea level rise, thus for coastal cities in particular.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 10 ( 2022-10-5)
    Abstract: Space-based Earth observation (EO), in the form of long-term climate data records, has been crucial in the monitoring and quantification of slow changes in the climate system—from accumulating greenhouse gases (GHGs) in the atmosphere, increasing surface temperatures, and melting sea-ice, glaciers and ice sheets, to rising sea-level. In addition to documenting a changing climate, EO is needed for effective policy making, implementation and monitoring, and ultimately to measure progress and achievements towards the overarching goals of the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement to combat climate change. The best approach for translating EO into actionable information for policymakers and other stakeholders is, however, far from clear. For example, climate change is now self-evident through increasingly intense and frequent extreme events—heatwaves, droughts, wildfires, and flooding—costing human lives and significant economic damage, even though single events do not constitute “climate”. EO can capture and visualize the impacts of such events in single images, and thus help quantify and ultimately manage them within the framework of the UNFCCC Paris Agreement, both at the national level (via the Enhanced Transparency Framework) and global level (via the Global Stocktake). We present a transdisciplinary perspective, across policy and science, and also theory and practice, that sheds light on the potential of EO to inform mitigation, including sinks and reservoirs of greenhouse gases, and adaptation, including loss and damage. Yet to be successful with this new mandate, EO science must undergo a radical overhaul: it must become more user-oriented, collaborative, and transdisciplinary; span the range from fiducial to contextual data; and embrace new technologies for data analysis (e.g., artificial intelligence). Only this will allow the creation of the knowledge base and actionable climate information needed to guide the UNFCCC Paris Agreement to a just and equitable success.
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...