GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 31 ( 2022-08-02)
    Abstract: Nitrous oxide (N 2 O) is an important greenhouse gas (GHG) that also contributes to depletion of ozone in the stratosphere. Agricultural soils account for about 60% of anthropogenic N 2 O emissions. Most national GHG reporting to the United Nations Framework Convention on Climate Change assumes nitrogen (N) additions drive emissions during the growing season, but soil freezing and thawing during spring is also an important driver in cold climates. We show that both atmospheric inversions and newly implemented bottom-up modeling approaches exhibit large N 2 O pulses in the northcentral region of the United States during early spring and this increases annual N 2 O emissions from croplands and grasslands reported in the national GHG inventory by 6 to 16%. Considering this, emission accounting in cold climate regions is very likely underestimated in most national reporting frameworks. Current commitments related to the Paris Agreement and COP26 emphasize reductions of carbon compounds. Assuming these targets are met, the importance of accurately accounting and mitigating N 2 O increases once CO 2 and CH 4 are phased out. Hence, the N 2 O emission underestimate introduces additional risks into meeting long-term climate goals.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 49 ( 2019-12-03), p. 24676-24681
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 49 ( 2019-12-03), p. 24676-24681
    Abstract: Recreational fisheries are valued at $190B globally and constitute the predominant way in which people use wild fish stocks in developed countries, with inland systems contributing the main fraction of recreational fisheries. Although inland recreational fisheries are thought to be highly resilient and self-regulating, the rapid pace of environmental change is increasing the vulnerability of these fisheries to overharvest and collapse. Here we directly evaluate angler harvest relative to the biomass production of individual stocks for a major inland recreational fishery. Using an extensive 28-y dataset of the walleye ( Sander vitreus ) fisheries in northern Wisconsin, United States, we compare empirical biomass harvest (Y) and calculated production (P) and biomass (B) for 390 lake year combinations. Production overharvest occurs when harvest exceeds production in that year. Biomass and biomass turnover (P/B) declined by ∼30 and ∼20%, respectively, over time, while biomass harvest did not change, causing overharvest to increase. Our analysis revealed that ∼40% of populations were production-overharvested, a rate 〉 10× higher than estimates based on population thresholds often used by fisheries managers. Our study highlights the need to adapt harvest to changes in production due to environmental change.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...