GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2023
    In:  The Journal of Neuroscience Vol. 43, No. 9 ( 2023-03-01), p. 1530-1539
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 43, No. 9 ( 2023-03-01), p. 1530-1539
    Abstract: The velocity-storage circuit participates in the vestibulopostural reflex, but its role in the postural reflex requires further elucidation. The velocity-storage circuit differentiates gravitoinertial information into gravitational and inertial cues using rotational cues. This implies that a false rotational cue can cause an erroneous estimation of gravity and inertial cues. We hypothesized the velocity-storage circuit is a common gateway for all vestibular reflex pathways and tested that hypothesis by measuring the postural and perceptual responses from a false inertial cue estimated in the velocity-storage circuit. Twenty healthy human participants (40.5 ± 8.2 years old, 6 men) underwent two different sessions of earth-vertical axis rotations at 120°/s for 60 s. During each session, the participants were rotated clockwise and then counterclockwise with two different starting head positions (head-down and head-up). During the first (control) session, the participants kept a steady head position at the end of rotation. During the second (test) session, the participants changed their head position at the end of rotation, from head-down to head-up or vice versa. The head position and inertial motion perception at the end of rotation were aligned with the inertia direction anticipated by the velocity-storage model. The participants showed a significant correlation between postural and perceptual responses. The velocity-storage circuit appears to be a shared neural integrator for the vestibulopostural reflex and vestibular perception. Because the postural responses depended on the inertial direction, the postural instability in vestibular disorders may be the consequence of the vestibulopostural reflex responding to centrally estimated false vestibular cues. SIGNIFICANCE STATEMENT The velocity-storage circuit appears to participate in the vestibulopostural reflex, which stabilizes the head and body position in space. However, it is still unclear whether the velocity-storage circuit for the postural reflex is in common with that involved in eye movement and perception. We evaluated the postural and perceptual responses to a false inertial cue estimated by the velocity-storage circuit. The postural and perceptual responses were consistent with the inertia direction predicted in the velocity-storage model and were correlated closely with each other. These results show that the velocity-storage circuit is a shared neural integrator for vestibular-driven responses and suggest that the vestibulopostural response to a false vestibular cue is the pathomechanism of postural instability clinically observed in vestibular disorders.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2023
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 51 ( 2013-12-17), p. 20575-20580
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 51 ( 2013-12-17), p. 20575-20580
    Abstract: Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1 -deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 34 ( 2012-08-21), p. 13656-13661
    Abstract: Recently, hepatic peroxisome proliferator-activated receptor (PPAR)γ has been implicated in hepatic lipid accumulation. We found that the C3H mouse strain does not express PPARγ in the liver and, when subject to a high-fat diet, is resistant to hepatic steatosis, compared with C57BL/6 (B6) mice. Adenoviral PPARγ2 injection into B6 and C3H mice caused hepatic steatosis, and microarray analysis demonstrated that hepatic PPARγ2 expression is associated with genes involved in fatty acid transport and the triglyceride synthesis pathway. In particular, hepatic PPARγ2 expression significantly increased the expression of monoacylglycerol O -acyltransferase 1 (MGAT1). Promoter analysis by luciferase assay and electrophoretic mobility shift assay as well as chromatin immunoprecipitation assay revealed that PPARγ2 directly regulates the MGAT1 promoter activity. The MGAT1 overexpression in cultured hepatocytes enhanced triglyceride synthesis without an increase of PPARγ expression. Importantly, knockdown of MGAT1 in the liver significantly reduced hepatic steatosis in 12-wk-old high-fat–fed mice as well as ob/ob mice, accompanied by weight loss and improved glucose tolerance. These results suggest that the MGAT1 pathway induced by hepatic PPARγ is critically important in the development of hepatic steatosis during diet-induced obesity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 362, No. 6420 ( 2018-12-14)
    Abstract: To broaden our understanding of human neurodevelopment, we profiled transcriptomic and epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type–specific dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late fetal transition associated with sharply decreased regional differences and changes in cellular composition and maturation, followed by a reversal in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis of gene coexpression modules revealed relationships with epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to brain-based traits and neuropsychiatric disorders (including MEF2C , SATB2 , SOX5 , TCF4 , and TSHZ3 ) converged in a small number of modules and distinct cell types, revealing insights into neurodevelopment and the genomic basis of neuropsychiatric risks.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 24, No. 6 ( 2004-02-11), p. 1280-1287
    Abstract: The catalytic subunit of telomerase reverse transcriptase (TERT) protects dividing cells from replicative senescence in vitro . Here, we show that expression of TERT mRNA is induced in the ipsilateral cortical neurons after occlusion of the middle cerebral artery in adult mice. Transgenic mice that overexpress TERT showed significant resistance to ischemic brain injury. Among excitotoxicity, oxidative stress, and apoptosis comprising of routes of ischemic neuronal death, NMDA receptor-mediated excitotoxicity was reduced in forebrain cell cultures overexpressing TERT. NMDA-induced accumulation of cytosolic free Ca 2+ ([Ca 2+ ] c ) was reduced in forebrain neurons from TERT transgenic mice, which was attributable to the rapid flow of [Ca 2+ ] c into the mitochondria from the cytosol without change in Ca 2+ influx and efflux through the plasma membrane. The present study provides evidence that TERT is inducible in postmitotic neurons after ischemic brain injury and prevents NMDA neurotoxicity through shift of the cytosolic free Ca 2+ into the mitochondria, and thus plays a protective role in ameliorating ischemic neuronal cell death.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2004
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 7 ( 2011-02-15), p. 2662-2667
    Abstract: For ultrasensitive magnetic resonance imaging (MRI), magnetic nanoparticles with extremely high r2 relaxivity are strongly desired. Magnetosome-like nanoparticles were prepared by coating polyethylene glycol-phospholipid (PEG-phospholipid) onto ferrimagnetic iron oxide nanocubes (FIONs). FIONs exhibited a very high relaxivity (r2) of 324 mM -1  s -1 , allowing efficient labeling of various kinds of cells. The magnetic resonance (MR) imaging of single cells labeled with FIONs is demonstrated not only in vitro but also in vivo. Pancreatic islet grafts and their rejection could be imaged using FIONs on a 1.5 T clinical MRI scanner. The strong contrast effect of FIONs enabled MR imaging of transplanted islets in small rodents as well as in large animals. Therefore, we expect that MR imaging of pancreatic islet grafts using FIONs has the potentials for clinical applications. Furthermore, FIONs will enable highly sensitive noninvasive assessment after cell transplantation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 36 ( 2009-09-08), p. 15326-15331
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 36 ( 2009-09-08), p. 15326-15331
    Abstract: Osteopontin (OPN) is highly expressed in cancer patients and plays important roles in many stages of tumor progression, such as anti-apoptosis, proliferation, and metastasis. From functional screening of human cDNA library, we isolated OPN as a caspase-8 substrate that regulates cell death during hypoxia/reoxygenation (Hyp/RO). In vitro cleavage assays demonstrate that OPN is cleaved at Asp-135 and Asp-157 by caspase-8. Cellular cleavage of OPN is observed in apoptotic cells exposed to Hyp/RO among various apoptotic stimuli and its cleavage is blocked by zVAD or IETD caspase inhibitor. Further, over-expression of OPN, the form with secretion signal, inhibits Hyp/RO-induced cell death. Caspase cleavage-defective OPN mutant (OPN D135A/D157A) is more efficient to suppress Hyp/RO-induced cell death than wild-type OPN. OPN D135A/D157A sustains AKT activity to increase cell viability through inhibition of caspase-9 during Hyp/RO. In addition, OPN is highly induced in some tumor cells during Hyp/RO, such as HeLa and Huh-7 cells, which is associated with their resistance to Hyp/RO by sustaining AKT activity. Notably, OPN C-terminal cleavage fragment produced by caspase-8 is detected in the nucleus. Plasmid-encoded expression of OPN C-terminal cleavage fragment increases p53 protein level and induces apoptosis of wild-type mouse embryonic fibroblast cells, but not p53 −/− mouse embryonic fibroblast cells. These observations suggest that the protective function of OPN during Hyp/RO is inactivated via the proteolytic cleavage by caspase-8 and its cleavage product subsequently induces cell death via p53, postulating caspase-8 as a negative regulator of tumorigenic activity of OPN.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 9 ( 2022-03)
    Abstract: An ideal cancer therapeutic strategy involves the selective killing of cancer cells without affecting the surrounding normal cells. However, researchers have failed to develop such methods for achieving selective cancer cell death because of shared features between cancerous and normal cells. In this study, we have developed a therapeutic strategy called the cancer-specific insertions–deletions (InDels) attacker (CINDELA) to selectively induce cancer cell death using the CRISPR-Cas system. CINDELA utilizes a previously unexplored idea of introducing CRISPR-mediated DNA double-strand breaks (DSBs) in a cancer-specific fashion to facilitate specific cell death. In particular, CINDELA targets multiple InDels with CRISPR-Cas9 to produce many DNA DSBs that result in cancer-specific cell death. As a proof of concept, we demonstrate here that CINDELA selectively kills human cancer cell lines, xenograft human tumors in mice, patient-derived glioblastoma, and lung patient-driven xenograft tumors without affecting healthy human cells or altering mouse growth.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...