GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
Material
Publisher
  • American Meteorological Society  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Applied Meteorology and Climatology Vol. 55, No. 6 ( 2016-06), p. 1359-1376
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 55, No. 6 ( 2016-06), p. 1359-1376
    Abstract: Climate change will inevitably continue for the next few decades and will have an impact on climate-sensitive agricultural production, emphasizing the need to design effective adaptive strategies to cope with climate risk or take advantage of potential climatic benefits. In this study, the latest version of the Crop Environment Resource Synthesis-Rice (CERES-Rice) model was applied to assess the impacts of climate change and carbon dioxide (CO 2 ) fertilization on rice yield, as well as the effectiveness of two popularly adopted adaptive measures in Hunan Province, the main rice-production location in China. The simulation spanned 30 years of baseline (1981–2010) as well as three future periods (2011–40, 2041–70, and 2071–99) with climate data generated by five general circulation models under the newly developed representative concentration pathway (RCP) 4.5 and 8.5 scenarios. The simulation results showed that, in comparison with average rice yield during the baseline (1981–2010), the ensemble-average yield of all cultivars during the 2020s, 2050s, and 2080s would decrease under both RCPs without CO 2 fertilization effects. The ensemble-average yield reduction during the 2080s was alleviated under both RCPs if CO 2 fertilization effects were accounted for. Adaptation simulations indicated that two adaptive measures (switching cultivars and changing planting dates) could mitigate the adverse effect to different extents. The intermodel variability under both RCPs was generally small. These findings may provide useful insight into the potential impacts of climate change on rice yield and effective adaptive measures to mitigate the adverse effect of future climate change in Hunan Province.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 22 ( 2015-11-15), p. 8923-8938
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 22 ( 2015-11-15), p. 8923-8938
    Abstract: The extent to which an urbanization effect has contributed to climate warming is under debate in China. Some previous studies have shown that the urban heat island (UHI) contribution to national warming was substantial (10%–40%). However, by considering the spatial scale of urbanization effects, this study indicates that the UHI contribution is negligible (less than 1%). Urban areas constitute only 0.7% of the whole of China. According to the proportions of urban and rural areas used in this study, the weighted urban and rural temperature averages reduced the estimated total warming trend and also reduced the estimated urban effects. Conversely, if all stations were arithmetically averaged, that is, without weighting, the total warming trend and urban effects will be overestimated as in previous studies because there are more urban stations than rural stations in China. Moreover, the urban station proportion (68%) is much higher than the urban area proportion (0.7%).
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...