GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Cambridge [u.a.] : Cambridge Univ. Press
    Keywords: Mathematical analysis ; Engineering mathematics ; Mathematical physics ; Einführung ; Mathematik
    Type of Medium: Book
    Pages: XXVII, 1333 S. , graph. Darst. , 25 cm
    Edition: 3. ed., 10. printing
    ISBN: 9780521679718
    DDC: 515.1
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Cosmology - Statistical methods. ; Electronic books.
    Description / Table of Contents: An essential reference for graduate students and researchers in cosmology, astrophysics and applied statistics, this timely book is the only comprehensive introduction to the use of Bayesian methods in cosmological studies. Contributions from 24 highly regarded cosmologists and statisticians make this an authoritative guide to the subject.
    Type of Medium: Online Resource
    Pages: 1 online resource (317 pages)
    Edition: 1st ed.
    ISBN: 9780511767081
    DDC: 523.101/519542
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Contents -- List of contributors -- Preface -- Part I Methods -- 1 Foundations and algorithms -- 1.1 Rational inference -- 1.2 Foundations -- 1.2.1 Lattices -- 1.2.2 Measure -- Addition -- Assignment -- Multiplication -- Commutativity -- 1.2.3 Information -- 1.2.4 Probability -- 1.3 Inference -- 1.3.1 Bayes' theorem -- 1.3.2 Prior probability -- Informal -- Symmetry -- Maximum entropy -- Continuous problems -- Geometry -- 1.4 Algorithms -- 1.4.1 Nested sampling -- Theory -- Kernel -- Uncertainty -- Exploring the prior -- Exploring the constraint -- Posterior -- 1.4.2 Simulated annealing -- Theory -- Uncertainty -- Schedule -- Exploration -- Posterior -- 1.4.3 Comparison -- 1.5 Concluding remarks -- References -- 2 Simple applications of Bayesian methods -- 2.1 Introduction -- 2.2 Essentials of modern cosmology -- 2.2.1 Standard rulers and candles -- 2.2.2 Motivation -- 2.3 Theorists and pre-processed data -- 2.4 Experimentalists and raw measurements -- 2.5 Concluding remarks -- References -- 3 Parameter estimation using Monte Carlo sampling -- 3.1 Why do sampling? -- 3.2 How do I get the samples? -- 3.2.1 Direct sampling methods -- 3.2.2 Problems with large dimensions -- 3.2.3 Markov chain sampling -- 3.2.4 Metropolis-Hastings algorithm -- 3.2.5 Other sampling methods -- 3.2.6 Thermodynamic and flat-histogram methods -- 3.2.7 Baby and toy -- 3.3 Have I taken enough samples yet? -- 3.4 What do I do with the samples? -- 3.4.1 Parameter constraints -- 3.4.2 Importance sampling -- 3.4.3 Inference from simulation -- 3.4.4 Model selection as parameter estimation -- 3.5 Conclusions -- References -- 4 Model selection and multi-model inference -- 4.1 Introduction -- 4.2 Levels of Bayesian inference -- 4.3 The Bayesian framework -- 4.3.1 Priors -- 4.3.2 Information and complexity. , 4.4 Computing the Bayesian evidence -- 4.4.1 General Monte Carlo methods -- 4.4.2 Restricted Monte Carlo methods -- 4.4.3 Approximate methods -- 4.5 Interpretational scales -- 4.6 Applications -- 4.6.1 Applications to real data -- The spectral tilt -- Dark energy -- Other applications -- 4.6.2 Forecasting and survey design -- 4.7 Conclusions -- References -- 5 Bayesian experimental design and model selection forecasting -- 5.1 Introduction -- 5.2 Predicting the effectiveness of future experiments -- 5.2.1 Utility, expected utility and optimization -- 5.2.2 Choosing the best experiment - an example -- 5.3 Experiment optimization for error reduction -- 5.3.1 Fisher matrix error forecast -- 5.3.2 Utility functions for error minimization -- 5.3.3 Application to cosmology: optimization of the WFMOS survey -- 5.4 Experiment optimization for model selection -- 5.4.1 Quantifying experimental capabilities using Bayes factors -- 5.4.2 Application: dark energy vs. a cosmological constant -- 5.5 Predicting the outcome of model selection -- 5.5.1 Predictive distributions -- 5.5.2 Predictive posterior odds distribution -- 5.5.3 Application: spectral index from the Planck satellite -- 5.6 Summary -- References -- 6 Signal separation in cosmology -- 6.1 Model of the data -- 6.2 The hidden, visible and data spaces -- 6.3 Parameterization of the hidden space -- 6.3.1 Mixing matrix -- 6.3.2 Component fields -- 6.3.3 Linear and non-linear parameters -- 6.4 Choice of data space -- 6.4.1 Pixel-domain data space -- 6.4.2 Fourier-domain data space -- 6.5 Applying Bayes' theorem -- 6.5.1 Defining the posterior distribution -- 6.6 Non-blind signal separation -- 6.6.1 Wiener filtering -- WF posterior -- Optimal values and error estimates -- 6.6.2 Harmonic-space maximum-entropy method -- Harmonic-space MEM posterior -- Optimal values and error estimates. , Relationship between the MEM and WF -- Determination of the regularization constant -- Iterative updating of the signal covariance matrix -- Accommodation of spatially varying noise and spectral parameters -- 6.6.3 Mixed-space maximum-entropy method -- 6.7 (Semi-)blind signal separation -- 6.7.1 Pixel-domain parameter estimation -- Uncorrelated signals and noise -- Correlated signals and noise -- 6.7.2 Independent component analysis (ICA) -- SMICA data model -- SMICA likelihood -- SMICA priors -- SMICA posterior -- 6.7.3 Correlated component analysis (CCA) -- 6.7.4 Determining the optimal number of components -- References -- Part II Applications -- 7 Bayesian source extraction -- 7.1 Traditional approaches -- 7.2 The Bayesian approach -- 7.2.1 Discrete sources in a background -- 7.2.2 Bayesian inference -- 7.2.3 Defining the posterior distribution -- 7.3 Variable-source-number models -- 7.4 Fixed-source-number models -- 7.5 Single-source models -- 7.5.1 Analytic source extraction and the matched filter -- 7.5.2 Iterative source extraction: local maximization -- 7.5.3 Iterative source extraction: global maximization -- 7.5.4 Simultaneous source extraction -- 7.5.5 Pixel-by-pixel source extraction -- 7.6 Conclusions -- Acknowledgments -- References -- 8 Flux measurement -- 8.1 Introduction -- 8.2 Photometric measurements -- 8.3 Classical flux estimation -- 8.4 The source population -- 8.5 Bayesian flux inference -- 8.6 The faintest sources -- 8.7 Practical flux measurement -- References -- 9 Gravitational wave astronomy -- 9.1 A new spectrum -- 9.2 Gravitational wave data analysis -- 9.2.1 The traditional approach -- 9.3 The Bayesian approach -- 9.3.1 Parameter estimation -- 9.3.2 Search strategies -- 9.3.3 Model selection -- References -- 10 Bayesian analysis of cosmic microwave background data -- 10.1 Introduction. , 10.2 The CMB as a hierarchical model -- 10.2.1 CMB data -- 10.2.2 From detectors to maps -- Destripers -- Deconvolution mapmaking -- Noise marginalization -- Wiener filters -- 10.2.3 From maps to power spectra -- 10.2.4 From spectra to cosmological parameters -- 10.3 Polarization -- Power spectra and E/B separation -- 10.4 Complications -- 10.4.1 Foregrounds and systematics -- 10.4.2 Non-Gaussianity -- 10.5 Conclusions -- References -- 11 Bayesian multilevel modelling of cosmological populations -- 11.1 Introduction -- 11.2 Galaxy distance indicators -- 11.2.1 The calibration problem -- 11.2.2 The estimation problem -- 11.2.3 Applications of galaxy distance indicators -- 11.3 Multilevel models -- 11.3.1 Adjusting source estimates: shrinkage -- 11.3.2 Poisson point process multilevel models -- 11.4 Future directions -- Acknowledgments -- References -- 12 A Bayesian approach to galaxy evolution studies -- 12.1 Discovery space -- 12.2 Average versus maximum likelihood -- 12.3 Priors and Malmquist/Eddington bias -- 12.4 Small samples -- 12.5 Measuring a width in the presence of a contaminating population -- 12.6 Fitting a trend in the presence of outliers -- 12.7 What is the number returned by tests such as… -- 12.8 Summary -- References -- 13 Photometric redshift estimation: methods and applications -- 13.1 Introduction -- 13.2 Template methods -- 13.3 Bayesian methods and non-colour priors -- 13.4 Training methods and neural networks -- 13.5 Errors on photo-z -- 13.6 Optimal filters -- 13.7 Comparison of photo-z codes -- 13.8 The role of spectroscopic datasets -- 13.9 Synergy with cosmological probes -- 13.10 Discussion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Cambridge [u.a.] : Cambridge Univ. Press
    Keywords: Mathematical analysis ; mathematical analysis ; Führer ; Bibliografie ; Ingenieurwissenschaften ; Mathematische Methode ; Physik ; Mathematische Methode ; Physik ; Ingenieurwissenschaften ; Angewandte Mathematik ; Mathematik ; Physik ; Ingenieurwissenschaften
    Type of Medium: Book
    Pages: XXIII, 1232 S. , graph. Darst. , 26 cm
    Edition: 2. ed.
    ISBN: 0521813727 , 0521890675
    DDC: 515
    RVK:
    Language: English
    Note: Previous ed.: 1997
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...